Title	APG Accelerator Systems Preliminary				
	Proposals: SPX				
Project Requestor	Katherine Harkay, Yong-chul Chae, Yuelin Li, Vadim Sajaev,				
	Chun-xi Wang, Marion White				
Date	April 7, 2008				
Group Leader(s)	Katherine Harkay				
Machine or Sector	Louis Emery				
Manager					
Category	Accelerator R&D				
Content ID*	APS_1255821 Rev. 1 4/9/08 1:01 PM				

^{*}This row is filled in automatically on check in to ICMS. See Note ¹

Description:

Start Year (FY)	FY09	Duration (Yr)	4				

Objectives:

Propose ideas that reduce risk, potentially reduce cost, or contribute to building-up and nurturing APS ultrafast user community

Benefit:

Reduce risk. Potentially reduce cost. Nurture APS ultrafast user community by providing a means to develop ultrafast detectors and test with transient short x-ray pulses.

Risks of Project: See Note ²

Same as SPX project as a whole: medium

Consequences of Not Doing Project: See Note ³

Lose opportunity to commission first ps-scale capability at hard x-ray source

Cost/Benefit Analysis: See Note 4

Aim to decrease cost/risk; improve benefit/cost ratio

Description:

- 1. Evaluate 4°K operation for lower deflecting voltage (2-4 MV)
- 2. Evaluate 2-cell cavity design, damp undamped parasitic modes using tuned cavity
- 3. Complete deflecting cavity lattice studies for longer straights
- 4. Build-up and nurture ultrafast science community by developing alternate transient schemes for short bunches or short pulses to enable development and test of fast detectors

See Accelerator Physics Technical Note: K. Harkay et al., "APS Renewal Plan: Accelerator System Preliminary Proposals," ASD/APG/2008-02 (Apr 2, 2008)

Funding Details

Cost: (\$K)

Use FY08 dollars.

Year	AIP	Contingency
1		
2		
3		
4		
5		
6		
7		
8		
9		
Total	0	

Contingency may be in dollars or percent. Enter figure for total project contingency.

Effort: (FTE)

The effort portion need not be filled out in detail by March 28

	Mechanical	Electrical		Software				
Year	Engineer	Engineer	Physicist	Engineer	Tech	Designer	Post Doc	Total
1								0
2								0
3								0
4								0
5								0
6								0
7								0
8								0
9								0

Notes:

¹ **ICMS**. Check in first revision to ICMS as a *New Check In*. Subsequent revisions should be checked in as revisions to that document i.e. *Check Out* the previous version and *Check In* the new version. Be sure to complete the *Document Date* field on the check in screen.

² **Risk Assessment.** Advise of the potential impact to the facility or operations that may result as a consequence of performing the proposed activity. Example: If the proposed project is undertaken then other systems impacted by the work include ... (If no assessment is appropriate then enter NA.)

³ **Consequence Assessment.** Advise of the potential consequences to the facility or to operations if the proposal is not executed. Example: If the proposed project is not undertaken then ____ may happen to the facility. (If no assessment is appropriate then enter NA.)

⁴ **Cost Benefit Analysis.** Describe cost efficiencies or value of the risk mitigated by the expenditure. Example: Failure to complete this maintenance project will result in increased total costs to the APS for emergency repairs and this investment of ____ will also result in improved reliability of ____. (If no assessment is appropriate then enter NA.)